Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Protein Sci ; 33(6): e5010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723172

RESUMEN

Recent studies have demonstrated that one can control the packing density, and in turn the filterability, of protein precipitates by changing the pH and buffer composition of the precipitating solution to increase the structure/order within the precipitate. The objective of this study was to examine the effect of sodium malonate, which is known to enhance protein crystallizability, on the morphology of immunoglobulin precipitates formed using a combination of ZnCl2 and polyethylene glycol. The addition of sodium malonate significantly stabilized the precipitate particles as shown by an increase in melting temperature, as determined by differential scanning calorimetry, and an increase in the enthalpy of interaction, as determined by isothermal titration calorimetry. The sodium malonate also increased the selectivity of the precipitation, significantly reducing the coprecipitation of DNA from a clarified cell culture fluid. The resulting precipitate had a greater packing density and improved filterability, enabling continuous tangential flow filtration with minimal membrane fouling relative to precipitates formed under otherwise identical conditions but in the absence of sodium malonate. These results provide important insights into strategies for controlling precipitate morphology to enhance the performance of precipitation-filtration processes for the purification of therapeutic proteins.


Asunto(s)
Malonatos , Malonatos/química , Filtración , Precipitación Química , Inmunoglobulinas/química , Polietilenglicoles/química , Cloruros/química , Rastreo Diferencial de Calorimetría , Malatos/química , Compuestos de Zinc
2.
Anal Chem ; 96(16): 6459-6466, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38592893

RESUMEN

Cysteine (Cys) and its oxidized form, cystine (Cys2), play crucial roles in biological systems and have considerable applications in cell culture. However, Cys in cell culture media is easily oxidized to Cys2, leading to solubility issues. Traditional analytical methods struggle to maintain the oxidation states of Cys and Cys2 during analysis, posing a significant challenge to accurately measuring and controlling these compounds. To effectively control the Cys and Cys2 levels, a rapid and accurate analytical method is required. Here, we screened derivatizing reagents that can react with Cys even under acidic conditions to realize a novel analytical method for simultaneously determining Cys and Cys2 levels. Diethyl 2-methylenemalonate (EMM) was found to possess the desired traits. EMM, characterized by its dual electron-withdrawing attributes, allowed for a rapid reaction with Cys under acidic conditions, preserving intact information for understanding the functions of target compounds. Combined with LC-MS/MS and an internal standard, this method provided high analytical accuracy in a short analytical time of 9 min. Using the developed method, the rapid oxidation of Cys in cell culture media was observed with the headspace of the storage container considerably influencing Cys oxidation and Cys2 precipitation rates. The developed method enabled the direct and simplified analysis of Cys behavior in practical media samples and could be used in formulating new media compositions, ensuring quality assurance, and real-time analysis of Cys and Cys2 in cell culture supernatants. This novel approach holds the potential to further enhance the media performance by enabling the timely optimal addition of Cys.


Asunto(s)
Medios de Cultivo , Cisteína , Cistina , Compuestos de Sulfhidrilo , Espectrometría de Masas en Tándem , Cisteína/química , Cisteína/análisis , Espectrometría de Masas en Tándem/métodos , Cistina/química , Cistina/análogos & derivados , Cistina/análisis , Medios de Cultivo/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Química Clic , Malonatos/química , Humanos , Cromatografía Liquida/métodos , Oxidación-Reducción , Cromatografía Líquida con Espectrometría de Masas
3.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629947

RESUMEN

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Asunto(s)
Nitratos , Fotólisis , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Humedad , Malonatos/química , Contaminantes Atmosféricos/química
4.
Chemosphere ; 336: 139260, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343644

RESUMEN

Chemical transformations in mixed aerosols alter the particulate physical properties. Nitrates and water soluble dicarboxylic acids, such as malonic acid (MA), are major components of ambient aerosol particles. Various metal ions such as, Na+, Ca2+, Mg2+ also become part of these complex aerosol systems during their atmospheric lifetime. Interactions among the co-existing ionic and molecular species govern the chemical changes in the aerosol particles. In this work, we provide a comparative account of the effect of metal ion identity (Na+, Ca2+, Mg2+) on such chemical changes arising from ion-molecular interactions in NaNO3-MA, Ca(NO3)2-MA and Mg(NO3)2-MA mixed inorganic-organic aerosols. In-situ micro-Raman spectroscopy has enabled us to gain molecular level insight on formation of organic salt and simultaneously estimate nitrate depletion in these mixed aerosols during different stages of their hygroscopic cycle. In addition to the nitrate depletion often reported during the drying phase, this study has brought to light an intriguing observation: depletion of nitrate in the humidification phase as well, a phenomenon that has hitherto remained undocumented. For the mixed systems studied here, the extent of nitrate depletion follows the order Mg-MA (58%) > Ca-MA (43%) > Na-MA (15%). The comparatively huge forward shift in the acid displacement reaction equilibrium for the systems, Ca-MA and Mg-MA is driven by complexation. Our results highlight the profound effect of ion-molecular interactions on the acid displacement reaction equilibria in aerosols.


Asunto(s)
Contaminantes Atmosféricos , Nitratos , Nitratos/química , Humectabilidad , Malonatos/química , Sodio , Compuestos Orgánicos , Aerosoles/química
5.
Molecules ; 27(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807514

RESUMEN

The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure-activity relationship (SAR) studies aimed at investigating para- or meta-benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments. To this end, twenty-three malonamide derivatives were synthesized and tested as inhibitors of fXa and thrombin (thr); the molecular determinants behind potency and selectivity were also studied by employing molecular docking. The malonamide linker, compared to the glycinamide one, does significantly increase anti-fXa potency and selectivity. The meta-benzamidine (P1) derivatives bearing 2',4'-difluoro-biphenyl as the P4 moiety proved to be highly potent reversible fXa-selective inhibitors, achieving inhibition constants (Ki) in the low nanomolar range. The most active compounds were also tested against cholinesterase (ChE) isoforms (acetyl- or butyrylcholinesterase, AChE, and BChE), and some of them returned single-digit micromolar inhibition potency against AChE and/or BChE, both being drug targets for symptomatic treatment of mild-to-moderate Alzheimer's disease. Compounds 19h and 22b were selected as selective fXa inhibitors with potential as multimodal neuroprotective agents.


Asunto(s)
Benzamidinas , Inhibidores de la Colinesterasa , Inhibidores del Factor Xa , Malonatos , Acetilcolinesterasa , Benzamidinas/química , Butirilcolinesterasa , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Factor Xa , Inhibidores del Factor Xa/química , Fibrinolíticos/química , Glicina/análogos & derivados , Glicina/química , Malonatos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
6.
Cardiovasc Drugs Ther ; 36(1): 1-13, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32648168

RESUMEN

PURPOSE: Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS: We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS: We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS: The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.


Asunto(s)
Cardiotónicos/farmacología , Malonatos/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Cardiotónicos/síntesis química , Cardiotónicos/química , Línea Celular , Modelos Animales de Enfermedad , Ésteres/química , Femenino , Humanos , Masculino , Malonatos/síntesis química , Malonatos/química , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Profármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo
7.
Chem Commun (Camb) ; 57(81): 10524-10527, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34550135

RESUMEN

Industrially relevant intermediates such as malonic acid, malonates and 3-oxopropionates can be easily accessed by ozonolysis of α-angelica lactone, derived from the platform chemical levulinic acid. The roles of the solvent and of the quenching conditions are of key importance for the outcome of the reaction.


Asunto(s)
4-Butirolactona/análogos & derivados , Malonatos/química , Ozono/química , 4-Butirolactona/química , Malonatos/síntesis química , Estructura Molecular
8.
Angew Chem Int Ed Engl ; 60(36): 19957-19964, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34164914

RESUMEN

Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.


Asunto(s)
Malonatos/metabolismo , Péptidos/metabolismo , S-Adenosilmetionina/metabolismo , Sulfatasas/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Malonatos/química , Estructura Molecular , Péptidos/química , Procesamiento Proteico-Postraduccional , S-Adenosilmetionina/química , Sulfatasas/química
9.
Molecules ; 26(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916390

RESUMEN

In the present study, a simple and environmentally friendly extraction method based on natural deep eutectic solvents (NADESs) was established to extract four bioactive steroidal saponins from Dioscoreae Nipponicae Rhizoma (DNR). A total of twenty-one types of choline chloride, betaine, and L-proline based NADESs were tailored, and the NADES composed of 1:1 molar ratio of choline chloride and malonic acid showed the best extraction efficiency for the four steroidal saponins compared with other NADESs. Then, the extraction parameters for extraction of steroidal saponins by selected tailor-made NADES were optimized using response surface methodology and the optimal extraction conditions are extraction time, 23.5 min; liquid-solid ratio, 57.5 mL/g; and water content, 54%. The microstructure of the DNR powder before and after ultrasonic extraction by conventional solvents (water and methanol) and the selected NADES were observed using field emission scanning electron microscope. In addition, the four steroidal saponins were recovered from NADESs by D101 macroporous resin with a satisfactory recovery yield between 67.27% and 79.90%. The present research demonstrates that NADESs are a suitable green media for the extraction of the bioactive steroidal saponins from DNR, and have a great potential as possible alternatives to organic solvents for efficiently extracting bioactive compounds from natural products.


Asunto(s)
Dioscorea/química , Extracción Líquido-Líquido/métodos , Fitoquímicos/aislamiento & purificación , Saponinas/aislamiento & purificación , Colina/química , Análisis Factorial , Tecnología Química Verde , Malonatos/química , Estructura Molecular , Fitoquímicos/química , Extractos Vegetales/química , Rizoma/química
10.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671544

RESUMEN

Phospha-Michael addition, which is the addition reaction of a phosphorus-based nucleophile to an acceptor-substituted unsaturated bond, certainly represents one of the most versatile and powerful tools for the formation of P-C bonds, since many different electrophiles and P nucleophiles can be combined with each other. This offers the possibility to access many diversely functionalized products. In this work, two kinds of basic pyridine-based organo-catalysts were used to efficiently catalyze phospha-Michael addition reactions, the 4-N,N-dimethylaminopyridinium saccharinate (DMAP·Hsac) salt and a fluorous long-chained pyridine (4-Rf-CH2OCH2-py, where Rf = C11F23). These catalysts have been synthesized and characterized by Lu's group. The phospha-Michael addition of diisopropyl, dimethyl or triethyl phosphites to α, ß-unsaturated malonates in the presence of those catalysts showed very good reactivity with high yield at 80-100 °C in 1-4.5 h with high catalytic recovery and reusability. With regard to significant catalytic recovery, sometimes more than eight cycles were observed for DMAP·Hsac adduct by using non-polar solvents (e.g., ether) to precipitate out the catalyst. In the case of the fluorous long-chained pyridine, the thermomorphic method was used to efficiently recover the catalyst for eight cycles in all the reactions. Thus, the easy separation of the catalysts from the products revealed the outstanding efficacy of our systems. To our knowledge, these are good examples of the application of recoverable organo-catalysts to the DMAP·Hsac adduct by using non-polar solvent and a fluorous long-chained pyridine under the thermomorphic mode in phospha-Michael addition reactions.


Asunto(s)
Malonatos/química , Metilaminas/química , Organofosfonatos/química , Compuestos Organofosforados/síntesis química , Fosfitos/química , Piridinas/química , Sacarina/química , Catálisis , Estructura Molecular , Compuestos Organofosforados/química , Sales (Química)/química
11.
Dalton Trans ; 50(13): 4583-4592, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33705511

RESUMEN

The discovery of novel anticancer chemotherapeutics is fundamental to treat cancer more efficiently. Towards this goal, two dyads consisting of a gold porphyrin appended to organotin(iv) entities were synthesized and their physicochemical and biological properties were characterized. One dyad contains a gold porphyrin connected to a tin(iv) cation via a malonate and two phenyl ligands (AuP-SnPh2), while the other contains two tin(iv) cations each chelated to one carboxylic acid group of the malonate and three phenyl ligands (AuP-Sn2Ph6). The mode of chelation of Sn(iv) to the malonate was elucidated by IR spectroscopy and 119Sn NMR. In the solid state, the complexes exist as coordination polymers in which the tin is penta-coordinated and bridged to two different malonate units. In solution the chemical shifts of 119Sn signals indicate that the tin complexes are in the form of monomeric species associated with a tetra-coordinated tin cation. The therapeutic potential of these new compounds was assessed by determining their cytotoxic activities on human breast cancer cells (MCF-7) and on healthy human fibroblasts (FS 20-68). The study reveals that the dyads are more potent anticancer drugs than the mixture of their individual components (gold porphyrin and reference tin complexes). Therefore, the covalent link of organotin complexes to a gold porphyrin induces a synergistic cytotoxic effect. The dyad AuP-SnPh2 shows high cytotoxicity (0.13 µM) against MCF-7 along with good selectivity for cancer cells versus healthy cells. Finally, it was also shown that the dyad AuP-Sn2Ph6 exhibits a very high anticancer activity (LC50 = 0.024 µM), but the presence of two tin units induces strong cytotoxicity on healthy cells too (LC50 = 0.032 µM). This study underscores, thus, the potential of the association of gold porphyrin and organotin complexes to develop anticancer metallo-drugs.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Oro/farmacología , Malonatos/farmacología , Porfirinas/farmacología , Estaño/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Oro/química , Humanos , Malonatos/química , Estructura Molecular , Porfirinas/química , Relación Estructura-Actividad , Estaño/química , Células Tumorales Cultivadas
12.
Org Biomol Chem ; 19(11): 2385-2398, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33651064

RESUMEN

Reviewed herein is the aromatic Cope rearrangement, a Cope rearrangement where one (or both) of the alkenes of the 1,5-diene are part of a greater aromatic system. While the Cope rearrangement of 1,5-dienes has seen wide utility, variation, and application in chemical synthesis, the aromatic Cope rearrangement, comparatively, has not. This review summarizes the ∼40 papers dating back to 1956 on this topic and is divided into the following sections: (1) introduction, including kinetic and thermodynamic challenges of the aromatic Cope rearrangement, and (2) key substrate features, of which there are four general types: (i) α-allyl-α-aryl malonates (and related substrates), (ii) 1-aryl-2-vinylcyclopropanes, and (iii) anion-accelerated aromatic oxy-Cope substrates, and (iv) the concept of synchronized aromaticity. Ultimately, we hope this review will draw attention to a potentially valuable transformation for arene functionalization that warrants further studies and development.


Asunto(s)
Alquenos/química , Hidrocarburos Aromáticos/química , Ciclopropanos/química , Cinética , Malonatos/química , Estructura Molecular , Estereoisomerismo , Termodinámica
13.
Molecules ; 26(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435514

RESUMEN

SNM1A is a nuclease that is implicated in DNA interstrand crosslink repair and, as such, its inhibition is of interest for overcoming resistance to chemotherapeutic crosslinking agents. However, the number and identity of the metal ion(s) in the active site of SNM1A are still unconfirmed, and only a limited number of inhibitors have been reported to date. Herein, we report the synthesis and evaluation of a family of malonate-based modified nucleosides to investigate the optimal positioning of metal-binding groups in nucleoside-derived inhibitors for SNM1A. These compounds include ester, carboxylate and hydroxamic acid malonate derivatives which were installed in the 5'-position or 3'-position of thymidine or as a linkage between two nucleosides. Evaluation as inhibitors of recombinant SNM1A showed that nine of the twelve compounds tested had an inhibitory effect at 1 mM concentration. The most potent compound contains a hydroxamic acid malonate group at the 5'-position. Overall, our studies advance the understanding of requirements for nucleoside-derived inhibitors for SNM1A and indicate that groups containing a negatively charged group in close proximity to a metal chelator, such as hydroxamic acid malonates, are promising structures in the design of inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Exodesoxirribonucleasas/antagonistas & inhibidores , Nucleósidos/farmacología , Compuestos Organometálicos/farmacología , Sitios de Unión/efectos de los fármacos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ésteres/química , Ésteres/farmacología , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Malonatos/química , Malonatos/farmacología , Estructura Molecular , Nucleósidos/química , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química
14.
Nat Commun ; 12(1): 299, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436637

RESUMEN

Chiral acetylenic derivatives are found in many bioactive compounds and are versatile functional groups in organic chemistry. Here, we describe an enantioselective nickel/Lewis acid-catalyzed asymmetric propargylic substitution reaction from simple achiral materials under mild condition. The introduction of a Lewis acid cocatalyst is crucial to the efficiency of the transformation. Notably, we investigate this asymmetric propargylic substitution reaction for the development of a range of structurally diverse natural products. The power of this strategy is highlighted by the collective synthesis of seven biologically active compounds: (-)-Thiohexital, (+)-Thiopental, (+)-Pentobarbital, (-)-AMG 837, (+)-Phenoxanol, (+)-Citralis, and (-)-Citralis Nitrile.


Asunto(s)
Alquinos/síntesis química , Ácidos de Lewis/química , Níquel/química , Preparaciones Farmacéuticas/síntesis química , Alquilación , Catálisis , Ésteres/química , Malonatos/química , Estereoisomerismo
15.
Chembiochem ; 21(24): 3504-3510, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-32770593

RESUMEN

Urea appears to be a key intermediate of important prebiotic synthetic pathways. Concentrated pools of urea likely existed on the surface of the early Earth, as urea is synthesized in significant quantities from hydrogen cyanide or cyanamide (widely accepted prebiotic molecules), it has extremely high water solubility, and it can concentrate to form eutectics from aqueous solutions. We propose a model for the origin of a variety of canonical and non-canonical nucleobases, including some known to form supramolecular assemblies that contain Watson-Crick-like base pairs.The dual nucleophilic-electrophilic character of urea makes it an ideal precursor for the formation of nitrogenous heterocycles. We propose a model for the origin of a variety of canonical and noncanonical nucleobases, including some known to form supramolecular assemblies that contain Watson-Crick-like base pairs. These reactions involve urea condensation with other prebiotic molecules (e. g., malonic acid) that could be driven by environmental cycles (e. g., freezing/thawing, drying/wetting). The resulting heterocycle assemblies are compatible with the formation of nucleosides and, possibly, the chemical evolution of molecular precursors to RNA. We show that urea eutectics at moderate temperature represent a robust prebiotic source of nitrogenous heterocycles. The simplicity of these pathways, and their independence from specific or rare geological events, support the idea of urea being of fundamental importance to the prebiotic chemistry that gave rise to life on Earth.


Asunto(s)
Evolución Química , Malonatos/química , ARN/química , Urea/química , Planeta Tierra , Origen de la Vida , Temperatura
16.
Biochim Biophys Acta Biomembr ; 1862(11): 183433, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763244

RESUMEN

In an attempt to understand the possibility of applications of the fullerene-based systems for transporting various polar compounds like hexamethonium through the blood-brain barrier, we studied the influence of a series of derivatives of fullerene C60 in the form of salts with hexamethonium bis-anion, namely the adducts of fullerenols with 6-aminohexanoic acid (IEM-2197), and two bis-adduct malonic acid derivatives of fullerene with addents bound in two hemispheres (IEM-2143) and in equatorial positions (IEM-2144), on model membranes. We showed that IEM-2197 induced the disintegration of the bilayers composed of DOPC at the concentrations more than 2 mg/ml. IEM-2144 and IEM-2143-induced ion-permeable pores at concentrations of 0.3 and 0.02 mg/ml, respectively; herewith, IEM-2143 was characterized by the greater efficiency than IEM-2144. IEM-2197 did not significantly affect the phase behavior of DPPC, while the melting temperature significantly decreased with addition of IEM-2144 and IEM-2143. The increase in the half-width of the main transition peaks by more than 2.0 °C in the presence of IEM-2144 and IEM-2143 was observed, along with the pronounced peak deconvolution. We proposed that the immersion of IEM-2144 and IEM-2143 into the polar region of the DOPC or DPPC bilayers led to an increase in the relative mobility of tails and formation of ion-permeable defects. IEM-2197 demonstrated the more pronounced effects on the melting and ion permeability of PG- and PS-containing bilayers compared to PC-enriched membranes. These results indicated that IEM-2197 preferentially interacts with the negatively charged lipids compared to neutral species.


Asunto(s)
Aminocaproatos/química , Fulerenos/química , Malonatos/química , Membranas Artificiales , Modelos Químicos , Fosfatidilcolinas/química , Solubilidad , Agua/química
17.
Mol Pharm ; 17(9): 3526-3540, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32692564

RESUMEN

Many mitochondrial metabolites and bioactive molecules contain two carboxylic acid moieties that make them unable to cross biological membranes. Hence, there is considerable interest in facilitating the uptake of these molecules into cells and mitochondria to modify or report on their function. Conjugation to the triphenylphosphonium (TPP) lipophilic cation is widely used to deliver molecules selectively to mitochondria in response to the membrane potential. However, permanent attachment to the cation can disrupt the biological function of small dicarboxylates. Here, we have developed a strategy using TPP to release dicarboxylates selectively within mitochondria. For this, the dicarboxylate is attached to a TPP compound via a single ester bond, which is then cleaved by intramitochondrial esterase activity, releasing the dicarboxylate within the organelle. Leaving the second carboxylic acid free also means mitochondrial uptake is dependent on the pH gradient across the inner membrane. To assess this strategy, we synthesized a range of TPP monoesters of the model dicarboxylate, malonate. We then tested their mitochondrial accumulation and ability to deliver malonate to isolated mitochondria and to cells, in vitro and in vivo. A TPP-malonate monoester compound, TPP11-malonate, in which the dicarboxylate group was attached to the TPP compound via a hydrophobic undecyl link, was most effective at releasing malonate within mitochondria in cells and in vivo. Therefore, we have developed a TPP-monoester platform that enables the selective release of bioactive dicarboxylates within mitochondria.


Asunto(s)
Ácidos Carboxílicos/química , Cationes/química , Mitocondrias/efectos de los fármacos , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ésteres/química , Femenino , Células HeLa , Compuestos Heterocíclicos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Malonatos/química , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Compuestos Organofosforados/química , Ratas , Ratas Wistar
18.
J Chromatogr A ; 1620: 461012, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32276856

RESUMEN

Quantification of analysis results for the suspect and non-targeted screening is essential for obtaining meaningful insight from the measurements. Ionization efficiency predictions is a possible approach to enable quantitation without standard substances. This is, however, especially challenging for the analysis carried out by combining the full scan mode either with fragmentation experiments in data-dependent or data-independent acquisition mode. Here we investigate the correlation of ionization efficiency values measured in full scan mode with the response factors measured in multiple reaction monitoring (MRM) mode for derivatized amino acids. We observe good correlation (R2 of 0.80) for 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatized amino acids. This encourages the use of the measured ionization efficiency values to estimate amino acid concentrations in different beverages. We apply the measured ionization efficiency values for estimating the concentration of amino acids for measurements done both in full scan as well as in MRM mode in wines and beers. We show that the calculated concentrations are in very good correlation with measured values (R2 of 0.71 to 1.00). The method possesses average trueness of 70.5% and shows an insignificant matrix effect.


Asunto(s)
Aminoácidos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Vino/análisis , Aminas/análisis , Aminoácidos/química , Aminoquinolinas/química , Cerveza/análisis , Carbamatos/química , Indicadores y Reactivos , Malonatos/química , Reproducibilidad de los Resultados
19.
Bioorg Chem ; 99: 103846, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32334195

RESUMEN

A base-mediated cascade reaction between malonate esters and acrolein was developed to access complex polycyclic systems. This novel tandem reaction enables the simultaneous generation of up to seven new bonds and at least three new stereogenic centers. Mechanistic studies indicate a series of nucleophilic 1,4 and 1,6 Michael addition reactions occur, followed by an aldol condensation reaction, culminating in the formation of three fused rings. The compounds were characterized by NMR studies and the stereochemistry was confirmed by X-ray analysis. The ability to generate multigram quantities of such complex molecular scaffolds renders the method promising for medicinal chemistry campaigns. Herein, we also demonstrate that the lead compounds display promising anti-proliferative activities against human cancer cell models.


Asunto(s)
Acroleína/farmacología , Antineoplásicos/farmacología , Ésteres/farmacología , Malonatos/farmacología , Compuestos Policíclicos/farmacología , Acroleína/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclización , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ésteres/química , Humanos , Malonatos/química , Modelos Moleculares , Estructura Molecular , Compuestos Policíclicos/síntesis química , Compuestos Policíclicos/química , Relación Estructura-Actividad
20.
Anal Biochem ; 600: 113746, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32333904

RESUMEN

Metabolite profiling in anaerobic alkane biodegradation plays an important role in revealing activation mechanisms. Apart from alkylsuccinates, which are considered to be the usual biomarkers via fumarate addition, the downstream metabolites of C-skeleton rearrangement can also be regarded as biomarkers. However, it is difficult to detect intermediate metabolites in both environmental samples and enrichment cultures, resulting in lacking direct evidence to prove the occurrence of fumarate addition pathway. In this work, a synthetic method of rearrangement metabolites was established. Four compounds, namely, propylmalonic acid, 2-(2-methylbutyl)malonic acid, 2-(2-methylpentyl)malonic acid and 2-(2-methyloctyl)malonic acid, were synthesized and determined by four derivatization approaches. Besides, their mass spectra were obtained. Four characteristic ions were observed at m/z 133 + 14n, 160 + 28n, 173 + 28n and [M - (45 + 14n)]+ (n = 0 and 2 for ethyl and n-butyl esters, respectively). For methyl esterification, mass spectral features were m/z 132, 145 and [M - 31]+, while for silylation, fragments were m/z 73, 147, 217, 248, 261 and [M - 15]+. These data provide basis on identification of potential rearrangement metabolites in anaerobic alkane biodegradation via fumarate addition.


Asunto(s)
Alcanos/metabolismo , Fumaratos/metabolismo , Malonatos/metabolismo , Alcanos/química , Anaerobiosis , Fumaratos/química , Malonatos/química , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...